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Abstract
Experiments using the rapid wire evaporation technique provided data for the
electrical conductivity of aluminium plasmas in a density range of (0.001–
2.3) g cm−3 and for temperatures between 10 000 and 285 000 K.

Within the frame of the linear response theory in the formulation of
Zubarev, calulations of the electrical conductivity were made in the same
density and temperature area. The composition of the plasma was determined
within the partially ionized plasma model; the interaction between particles
is considered to be a Debye potential (charged particles) and a screened
polarization potential (interaction with atoms). The agreement between
experimental and theoretical data is reasonable for arbitrary temperatures and
densities � < 0.7 g cm−3.

For higher densities, in the warm dense fluid region, strong correlation
effects occur. These effects can be taken into account including local field
corrections in the dielectric function, using a dynamic ion–ion structure factor,
or by replacing the Debye potential of the electron–ion interaction with a weak
pseudopotential. The latter can be determined within a density functional
theory. The influence of these effects on the electrical conductivity of a warm
dense aluminium fluid is shown.

PACS numbers: 52.25.Fi, 05.70.Ln

1. Introduction

Transport properties of a plasma are strongly correlated to its state. Electrical conductivity as
one of these properties plays an important role in determining plasma density and temperature.

Using the rapid wire evaporation technique, experiments provided data for the electrical
conductivity for various metal plasmas, see [1–5]. In these experiments, the metals undergo a
transition from a warm dense fluid with strong coupling and a degenerate electron system to
a weakly coupled plasma where electrons can be treated classically.
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Standard methods such as the Spitzer theory [6] or the original Ziman theory [7] cannot
describe both cases. The challenge for the theory of plasmas is to reproduce the experimental
data in the whole studied density–temperature region, which is largest for aluminium:
0.001 g cm−3 < � < 2.3 g cm−3 and 8000 K � T � 285 000 K.

2. Electrical conductivity within LRT

The linear response theory (LRT) in the formulation of Zubarev [8] is a general approach to
transport properties of plasmas on the basis of the correlation function method. It is valid for
arbitrary degeneracy; the Spitzer results and the Ziman theory can be reproduced as limiting
cases [9, 10].

Within this method, the electrical conductivity σ is given in a determinant representation

σ = −e2

�0 |(Dnm)|
∣∣∣∣ 0 (Q0m)

(Nn0) (Dnm)

∣∣∣∣ (1)

where �0 is the system volume, Nn0,Q0m and Dnm (n,m = 0, 1, 2, . . .) are correlation
functions of generalized momenta of the electron system.

Nnm and Qnm depend on the number of free electrons. Dnm can be separated with
respect to electron–electron, electron–ion, and, if atoms occur, electron–atom contributions
Dnm = Dee

nm + Dei
nm + Dea

nm which are, in turn, related to the transport cross sections
Qec

T , c = {e, i, a}. Depending on the strength of scattering, Qec
T can be evaluated in the T

matrix or in the Born approximation with respect to the relevant interaction.
For more details see [10–12].

3. Results for the plasma region

For low densities, the partially ionized plasma model (PIP) based on the chemical picture with
well-defined particles is an appropriate model. Bound states such as atoms are treated on the
same level as the elementary particles electrons and protons.

For an aluminium plasma we consider free electrons e, different species of ions Alk+ up
to a charge of k = 5, and neutral atoms Al0. These particles are connected via chemical
reactions in equilibrium, which leads to a system of coupled mass action laws. Together
with the neutrality condition ne = ∑5

k=1 knk, this system can be solved to derive the partial
densities nk of each species considered, see [12].

The electrical conductivity, thermal conductivity and thermopower of various metals were
calculated for such a PIP plasma [12]; figure 1 shows the results for the electrical conductivity
σ of aluminium.

Since strong scattering might occur between charges, Qei
T and Qee

T were evaluated on
T matrix level with respect to a Debye potential VD. This reproduces the Spitzer values
in the low-density limit. The screened polarization potential between electrons and atoms
is weak, so the Born approximation is sufficient for Qea

T . The minimum behaviour of the
electrical conductivity for increasing densities and low temperatures of about 10 000 K is due
to relocalization of free electrons and pressure ionization afterwards.

The overall agreement with the experimental data is good for densities � � 0.7 g cm−3

and arbitrary temperatures. Especially, the sharp increase in σ for � � 0.1 g cm−3 at 10 000 K
can be reproduced. The deviations between the 10 000 K-isotherm and Krisch and Kunze
data at this temperature can be explained with uncertainties in the temperature measurement.
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Figure 1. LRT results for the plasma region compared with experimental data. (a) shows isotherms
for 10 000 K, 20 000 K and 30 000 K, and experimental results of Krisch and Kunze (KK) [1],
and DeSilva and Katsouros (DK) [2]. (b) shows measured data by Benage et al [3]; theoretical
curves are calculated at the same densities and temperatures as in that experiment. Transport cross
sections are always calculated in T matrix approximation (TM). In addition, the results for the
Born approximation (BA) are given in (b).

In the high-density limit, σ is independent of temperature. Therefore, the differences between
theoretical and experimental data should be small at the highest densities.

4. The high-density case

The deviations in figure 1(b) at � � 1.0 g cm−3 are a result of the model used so far. In these
conditions, aluminium plasma is in the warm, dense matter regime. A physical picture with
ions immersed in a degenerate electron gas is more reliable there (see, e.g., [13]). Furthermore,
correlations in the ion system and in the electron gas occur, and the simple Debye potential is
not a good approximation there.
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Figure 2. Influence of different improvements made to the ‘original’ calculation (see figure 1).
(— · — — · —): PIP composition was replaced by QEOS composition. (— — —): a hard sphere
structure factor was included. (——): LFC by Ichimaru–Utsumi [18] was included in screening.
(— · — and — · · —): the Debye potential was replaced by a pseudopotential (H: Hamann scheme,
T&M: Troullier–Martins scheme). For comparison, experimental data of Benage et al [3] (•), and
the ‘original’ curves from figure 1(b) are included (dotted lines).

Since screening is strong at high densities, the Born approximation is suitable for the
calculation of transport cross sections

Qei
T (k) = 4π

k4

∫ 2k

0
dq q3

∣∣∣∣Vei(q)

ε(q)

∣∣∣∣
2

Sii(q). (2)

Electron–electron scattering is of minor importance due to Pauli blocking, and atoms
vanish at high densities due to pressure ionization. This makes it easy to take into account the
correlations mentioned above: as a first step, ion–ion correlations are included in the static
structure factor Sii, electron–electron correlations can be considered in the screening of the
potential Vei(q) via local field corrections, and even the possibility of using a pseudopotential,
as known from condensed matter physics, is given.

The input of another composition is also no problem, even if it is derived within a physical
picture: ions can be treated as particles with an average rational charge that represents the
mean ionization degree per heavy particle.

Figure 2 shows the influence of these possible improvements of the theory. As in
figure 1(b), all curves are calculated at the same densities and temperatures as given by
the experiment. Transport cross sections were calculated in the Born approximation (2) (BA).
Electron–electron scattering is still included on the BA level, but has no influence at the highest
densities.

The QEOS model [14] and its numerical conversion MPQeos [15], which was used as an
example for a different equation of state and composition [16], are based on the Thomas–Fermi
model, but include semi-empirical bonding corrections, and the ion thermal motion determined
from solid or liquid state models. In contrast to PIP, QEOS was developed to describe warm
dense matter. But that composition also cannot reproduce the experimental data (see figure 2).
Even if one considers a plasma with only Al3+ ions for the highest density � = 2.3 g cm−3 and
10 000 K, as found in molecular dynamic simulations, the electrical conductivity just reaches
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values of σ TM = 1.87 × 105 (� m)−1 and σ BA = 2.84 × 105 (� m)−1, respectively, which is
much lower than the electrical conductivity measured in the experiment [3]. Therefore, it can
be stated that the influence of the composition on the electrical conductivity is small at high
densities.

The effect of ion–ion correlations is also small. As a first attempt, the hard sphere structure
factor SHS

ii with a radius rHS = 0.054 nm (the radius of Al3+ ions in a crystal [17]) was used.
Including SHS

ii , σ reaches higher values, but the increase with the density is still not strong
enough compared with the experimental data.

The largest effect on electrical conductivity is the replacement of the Debye potential VD by
an effective electron–ion interaction. For this, electron–electron correlations can be included
in the screening function considering local field corrections (LFC). The Debye potential used
so far coincides with the static screening function ε = εRPA(q) in (2), which is now replaced
by εRPA+LFC(q). We used the approved LFC by Ichimaru and Utsumi [18].

Another possibility of using an effective electron–ion potential is replacing VD by
a weak pseudopotential. For instance, the code fhi98PP [19] provides constructions of
pseudopotentials within the Hamann scheme [20] and the Troullier–Martins scheme [21]
with different approximations for the exchange and correlation functionals. For the results
shown in figure 2, the local density approximation (LDA) by Perdew and Wang [22] was used,
the cut-off radii rc are given by default. Using generalized gradient approximation (GGA)
[23] or exact exchange (EXX) [24] gives similar results as when using LDA.

For both ways it is found that σ increases up to values similar to the experimental ones
in the high-density region (see figure 2). Using LFC has the advantage that it is valid over the
whole density region shown here. For the pseudopotentials, a crossover to the Debye potential
at low densities is needed.

5. Summary

Within the simple plasma approach as described in sections 2 and 3, the calculated results
of the electrical conductivity of aluminium plasma are in good agreement with experimental
data for densities � � 0.7 g cm−3 and the whole temperature region of 10 000 K� T �
285 000 K. For higher densities, the inclusion of high-density effects is possible. The effect
of a different composition on electrical conductivity is small. The same can be said about the
influence of an ion–ion structure factor. The largest effect is the change of the potential from
Debye to an effective interaction. LFC can be used over the whole density region. When
using a pseudopotential, a crossover to the Debye potential is needed for low densities. Self-
consistent approaches to these effects (composition, structure factor and effective electron–ion
interaction) are successful in calculating the electrical conductivity of plasmas, see [13, 25, 26].
A self-consistent use of high-density effects in LRT, including better approximations for Sii,
will provide reliable data not only for the electrical conductivity in a large density–temperature
region, but also for thermal conductivity and thermopower.
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